достижение стационарного состояния - определение. Что такое достижение стационарного состояния
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое достижение стационарного состояния - определение

Экономика стабильного состояния; Экономика стационарного состояния
  • Сценарий стабилизации размера ВВП Канады — коллапс
  • Сценарий стабилизации размера ВВП Канады — устойчивость

Термические коэффициенты         
  • Простейшая термодеформационная система — газ в цилиндре с поршнем. Всё, что за пределами окрашенного жёлтым пространства, — внешняя среда

величины, характеризующие изменение какого-либо параметра, входящего в термическое Уравнение состояния термодинамической системы (объёма V, давления р), в зависимости от др. параметра (давления р, температуры Т) в определённом термодинамическом процессе. Различают изотермический коэффициент сжатия (изотермическая сжимаемость) ; адиабатный коэффициент сжатия (адиабатическая сжимаемость) ; изохорный коэффициент давления и изобарный коэффициент расширения (коэффициент объёмного расширения) .

Поверхностные состояния         
  • Расщепление энергетических уровней атомов в энергетические зоны и поверхностные состояния в одномерном «кристалле», содержащем 8 атомов при уменьшении межатомного расстояния.
Поверхностные состояния, () (также поверхностные электронные состояния) — электронные состояния, пространственно локализованные вблизи поверхности твёрдого тела.
Уравнение состояния         
  • Простейшая термодеформационная система — газ в цилиндре с поршнем. Всё, что за пределами окрашенного жёлтым пространства, — внешняя среда

связывает давление р, объём V и температуру Т физически однородной системы в состоянии равновесия термодинамического (См. Равновесие термодинамическое): f (p, V, Т) = 0. Это уравнение называется термическим У. с., в отличие от калорического У. с., определяющего внутреннюю энергию (См. Внутренняя энергия) системы U как функцию какого-либо двух из трёх параметров р, V, Т. Термическое У. с. позволяет выразить давление через объём и температуру р = p (V, Т) и определить элементарную работу δA = = pδV при бесконечно малом расширении системы δV. У. с. является необходимым дополнением к термодинамическим законам, которое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов термодинамики (См. Термодинамика), а определяется или рассчитывается теоретически на основе представлений о строении вещества методами статистической физики (См. Статистическая физика). Из первого начала термодинамики (См. Первое начало термодинамики) следует лишь существование калорического У. с., а из второго начала термодинамики (См. Второе начало термодинамики) - связь между термическим и калорическим У. с. , откуда вытекает, что для идеального газа (См. Идеальный газ)внутренняя энергия не зависит от объёма = 0. Термодинамика показывает, что для вычисления как термического, так и калорического У. с., достаточно знать любой из потенциалов термодинамических (См. Потенциалы термодинамические) в виде функции своих параметров. Например, если известна Гельмгольцева энергия F как функция Т и V, то У. с. находят дифференцированием:

, .

Примерами У. с. для газов может служить Клапейрона уравнение для идеального газа pυ = RT, где R - Газовая постоянная, υ - объём 1 моля газа;

Ван-дер-Ваальса уравнение , где а и b - постоянные, зависящие от природы газа и учитывающие влияние сил притяжения между молекулами и конечность из объёма, вириальное У. с. для неидеального pυ / RT = 1 + B (T)/ υ + С (Т)/ υ2 +.., где В (Т), С (Т)... - 2-й, 3-й и т.д. вириальные коэффициенты, зависящие от сил взаимодействия между молекулами (см. Газы). Это уравнение является наиболее надёжным и теоретически обоснованным У. с. для газов и позволяет объяснить многочисленные экспериментальные результаты на основании простых моделей межмолекулярного взаимодействия (См. Межмолекулярное взаимодействие). Были предложены также различные эмпирические У. с., основанные на экспериментальных данных о теплоёмкости и сжимаемости. У. с. неидеальных газов указывает на существование критической точки (с параметрами pk, Vk, Tk), в которой газообразная и жидкая фазы становятся идентичными (см. Критическое состояние). Если У. с. представить в виде приведенного У. с., т. е. в безразмерных переменных p/pk, V/Vk, T/Tk, то при не слишком низких температурах это уравнение мало меняется для различных веществ (закон соответственных состояний (См. Соответственные состояния)).

Для равновесного излучения, или фотонного газа, У. с. определяется Планка законом излучения (См. Планка закон излучения) для средней плотности энергии.

Для жидкостей из-за сложности учёта всех особенностей взаимодействия молекул пока не удалось теоретически получить общее У. с. Уравнение Ван-дер-Ваальса хотя и применяют для качественной оценки поведения жидкостей, но оно по существу неприменимо ниже критической точки, когда возможно сосуществование жидкой и газообразной фаз. У. с., хорошо описывающее свойства ряда простых жидкостей, можно получить из приближённых теорий жидкого состояния типа теории свободного объёма или дырочной теории (см. Жидкость). Знание распределения вероятности взаимного расположения молекул (парной корреляционной функции) принципиально позволяет вычислить У. с. жидкости, но эта задача очень сложна и полностью ещё не решена даже с помощью вычислительных машин.

Для твёрдых тел термическое У. с. определяет зависимость модулей упругости (См. Модули упругости) от температуры и давления. Оно может быть получено на основании теории теплового движения в кристаллах, рассматривающей Фононы и их взаимодействие, но пока общего У. с. для твёрдых тел не найдено.

Для магнитных сред элементарная работа при намагничивании равна δA = -НδМ, где М - магнитный момент, Н - напряжённость магнитного поля. Следовательно, зависимость М = М (Н, Т) представляет собой магнитное У. с.

Для электрически поляризуемых сред элементарная работа при поляризации равна δA = -ЕδР где Р - поляризация, Е - напряжённость электрического поля, следовательно, У. с. имеет вид Р = (Е, Т).

Лит.: Хилл Т., Статистическая механика, пер. с англ., М., 1960; Вукалович М. П., Новиков И. И., Уравнение состояния реальных газов, М. - Л., 1948; Мейсон Э., Сперлинг Т., Вириальное уравнение состояния, пер. с англ., М., 1972; Лейбфрид Г., Людвиг В., Теория ангармонических эффектов в кристаллах, пер. с англ., М., 1963. См. также лит. при статьях Статистическая физика и Термодинамика.

Д. Н. Зубарев.

Википедия

Экономика устойчивого состояния

Экономика устойчивого состояния (англ. steady-state economy) — экономика с относительно стабильными главными показателями, такими как численность населения и уровень потребления, размер которых не превышает несущую способность экосистемы. Термин обычно относится[кем?] к национальной экономике, но также может применяться к экономической системе города, региона или всей планеты.